اثبات قضیه تالس
اگر خط راستی موازی با یکی از اضلاع مثلث رسم شود، دو ضلع دیگر را به یک نسبت میبرد.
"فرض میکنیم DE موازی با BC یکی از اضلاع مثلث ABC رسم شدهاست. میخواهیم اثبات کنیم نسبت BD به AD مثل نسبت CE است به AE.
E را به B و D را به C وصل میکنیم؛ بنابراین مساحت مثلث BDE با مساحت مثلث CDE مساوی است. زیرا هر دو دارای یک قاعدهٔ DE هستند و رأسهای آنها بر خط راست BC، موازی با قاعدهٔ DE قرار دارد؛"
❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤
از آن جایی که نسبتهای کمیتهای متساوی به یک کمیت با هم مساوی اند پس نسبت مساحت مثلث BDE به مثلث ADE مثل نسبت مساحت مثلث CDE است به مثلث ADE. از طرفی نسبت مساحت مثلث BDE به مساحت مثلث ADE، مثل نسبت BD است به DA؛ زیرا دارای یک ارتفاع اند که از E بر AB عمود میشود و نسبت آنها به یکدیگر مثل نسبت قاعدههای آنهاست. بهطور مشابه نسبت مساحت مثلث CDE به مساحت مثلث ADE مثل نسبت CE است به EA. بنابراین نسبت BD به DA نیز مثل نسبت CE است به EA
🔵🔵🔵🔵🔵🔵🔵🔵🔵🔵🔵🔵🔵🔵🔵🔵🔵🔵🔵🔵🔵🔵🔵
اثبات عکس قضیه در اصول اقلیدس
اگر ضلعهای مثلثی به یک نسبت بریده شده باشند، خط راست واصل بین نقطههای بریدگی با ضلع سوم موازی است.
باز فرض میکنیم در مثلث ABC ضلعهای AB و AC به یک نسبت قطع شدهاند، به طوری که نسبت BD به DA مثل نسبت CE به EA است؛ و فرض میکنیم D به E وصل شدهاست. میخواهیم اثبات کنیم DE با BC موازی است. در همان شکل، چون نسبت BD به DA مثل نسبت CE است به EA اما نسبت BD به DA، مثل نسبت مساحت مثلث BDE است به مثلث ADE، و، نسبت CE به EA، مثل نسبت مساحت مثلث CDE است به مثلث ADE، بنابراین، نسبت مساحت مثلث BDE به مثلث ADE هم، مثل نسبت مساحت مثلث CDE است به مثلثADE. لذا نسبت مساحتهای هر یک از مثلثهای BDE و CDE به ADE، یکی هستند، بنابراین مساحت مثلث BDE با مثلث CDE مساوی است؛ و قاعده هر دو آنها DE است. اما مثلتهای متساوی که یک قاعده داشته باشند رأسهای آنها نیز بر خط راستی موازی با قاعده قرار دارند؛ بنابراین DE با BC موازی است
🔵🔵🔵🔵🔵🔵🔵🔵🔵🔵🔵🔵🔵🔵🔵🔵🔵🔵🔵🔵🔵🔵🔵🔵🔵🔵🔵🔵
کاربردهای قضیه تالس
💚به دست آوردن ارتفاع هرم خئوپس
💚ضرب دو پاره خط و پیدا کردن مقدار معکوس پاره خط
سه مسئلهٔ معروف در هندسه مقدماتی وجود دارد که یونانیان باستان در بحث ترسیم با پرگار و ستاره آن را مطرح کردند.
تثلیث زاویه
تضعیف مکعب
تربیع دایره
دو هزار سال بعد در قرن نوزدهم میلادی با استفاده از جبر مجرد غیرممکن بودن این ترسیمها با پرگار و ستاره مشخص شد. برای بررسی ساختارهای ترسیم پذیر اطمینان یافتن از این موضوع مهم است که با دوخط داده شده خط دیگری میتوان رسم کرد که مقدار آن برابر حاصل ضرب دو خط اولیه باشد (ترسیم حاصل ضرب دو خط) و همینطور نشان دادن اینکه برای هر پاره خط به طول پاره خط دیگری میتوان ترسیم کرد که اندازهٔ باشد (ترسیم معکوس یک پاره خط). با استفاده از قضیهٔ تالس میتوان نشان داد که هر دو ساخت ممکن است.
💙💙💙💙💙💙💗💗💗💗💗💗💗💗💗💗💗💗💗
در مطالب بعدی با سه قضیه و کاربردهای ان اشنا شوید.
قضیه منلائوس
قضیه بطلمیوس
قضیه نیمساز زاویه